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The problem of modelling and identification of delamination in double-layer beams has been undertaken
within the framework of the virtual distortion method. For delamination modelling, a concept of the con-
tact layer has been proposed, assuming simple but effective truss connections. The laminate layers have
been modelled with Bernoulli beams. Good correspondence of the delamination model with experiments
has been observed despite disregarding the friction between layers. An algorithm for off-line identifica-
tion of delamination, solving an inverse problem with the use of gradient optimization, has been pro-
posed. For double cantilever beam examples, two co-existing delamination zones have been
successfully detected. An idea of on-line identification of delamination has been put forward, too.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Overview of recent papers on delamination

Fast development of composites has provided the incentive for
dealing with one of the most severe defects in such structures –
delamination. A review of methods dealing with delamination in
the 1990s is provided by Zou et al. [1].

Many recent papers devoted to delamination are focused on the
problem of proper modelling of delamination initiation and
growth. Meo and Thieulot [2] compare four different ways of mod-
elling delamination growth, i.e. cohesive zone, non-linear springs,
birth and death elements and tiebreak contact, applied to a double
cantilever beam test. Only the tiebreak contact method failed to
match experimental results due to the adopted stress-based failure
criterion. Iannucci [3] proposes an interface modelling technique
for explicit FE codes. In the technique, based on fracture mechan-
ics, not only a stress threshold for damage commencement, but
also critical energy release rate for particular delamination mode
is used. The interface modelling technique was applied to a series
of common delamination tests, including an experimentally vali-
dated impact test, to show the superiority of the approach over
standard stress-based failure criterion. Conventional interface
modelling methods suffer from several shortcomings i.e. interface
elements have to be introduced a priori, spurious deformation oc-
curs at onset of delamination, traction oscillations accompany the
process of delamination growth, finite elements have to be aligned
ll rights reserved.

).
with potential delamination surface. These unwanted features can
be avoided by modelling delamination at a mesoscopic level, pro-
posed by De Borst and Remmers [4], who use the partition-of-unity
property of the finite element shape functions. The strength of the
approach is emphasized by the possibility of its consistent exten-
sion to large strains.

Next important problem undertaken by researchers is the
search for such dynamic responses of the delaminated structure,
which are sensitive to detecting damage. Kim and Hwang [5]
examine the influence of debonding in face layers of honeycomb
sandwich beams on frequency response functions (FRF). By
extracting natural frequencies and damping ratios from the FRFs
and using modal parameter identification, the extent of delamina-
tion can be reliably determined. Li et al. [6] describe the potential
of random decrement signatures along with neural networks in
delamination detection. Due to inaccurate damping modelling,
there was a mismatch between their experimental and numerical
results for glass fibre reinforced beams. Zak [7] demonstrates that
damped non-linear vibrations are very sensitive to delamination
location and length, depending upon excitation. Single delamina-
tions in simply-supported and cantilever beams were considered.
Additional peaks in FRFs as well as changes in hysteresis loops of
transverse displacements of the beams were observed due to
delaminations.

Another group of papers propose solutions to the inverse prob-
lem of identification of delamination, belonging to the main stream
of structural health monitoring (SHM). Bois et al. [8] inversely
identify delamination by applying a piezoelectric transducer to
the laminate. A model including both the delaminated zone and
the piezoelectric ply was proposed. Electromechanical impedance
of a transducer working both as actuator and sensor was measured.
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An 18 cm 16-ply beam equipped with six transducers was investi-
gated for the frequencies between 100 Hz and 30 kHz. The objec-
tive function included frequency and mode amplitude terms
comparing the measured and simulated results. Single delamina-
tions at the end of the beam and inside the beam were identified
with good accuracy. Ishak et al. [9] use soft-computing methods
to detect delamination via inverse analysis. First, the strip element
method (SEM) was employed to train the multilayer neural net-
work. Excitation frequencies in the range 10–30 kHz were used
to identify delamination regions in a 20-ply laminated beam of just
4 cm length. Experiments were carried out using a scanning laser
vibrometer to validate the proposed approach. If discrepancies be-
tween experimental and SEM results occurred, the neural network
was re-trained to improve the quality of identification. The soft-
computing approach proved effective in identification of single
delamination for the considered range of frequencies. Schnack
et al. [10] propose an iterative method of identification of single
delamination by solving an inverse problem. A general ill-posed
problem described by the Kohn–Vogelius functional was trans-
formed into a coupled system of well-posed Euler–Lagrange equa-
tions and a smooth iterative numerical solution was proposed.
Surface deformations of a 16-ply composite specimen were mea-
sured using laser modulation and Michelson interferometer.
Delamination zones close to specimen boundaries as well as inter-
nal ones were successfully detected. Ramanujam et al. [11] apply
classical optimization to identify delamination via inverse analysis.
Their numerical considerations included a simply supported 4-ply
laminate beam with a single embedded delamination. The beam
was equipped with eight uniformly distributed sensors. Squared
difference between the actual and measured (simulated by FEM)
strains was considered and Nelder–Mead gradient-free optimiza-
tion method was employed to find a solution to the inverse prob-
lem. Many starting points were required to obtain a minimum.
Generally, only the sensors close to delamination showed a devia-
tion from the reference response. The quality of identification re-
sults was improved by considering a deflection term in the
objective function and multiple loading conditions. The approach
was presented for detection of a single, 2-dimensional, through-
delamination, solely by numerical simulation.
1.2. Objectives of the paper

This paper takes up two important problems regarding compos-
ite beams. The first one is proper modelling of delamination between
the layers of laminate, the other one – effective identification of
delamination zones.

For modelling of delamination, a concept of the contact layer
between laminates has been proposed. The layer consists of truss
elements supposed to model vanishing of the shear forces in
delamination zones and providing appropriate contact conditions
between the laminate layers. The two features of the contact layer,
modifying its properties in selected zones, are easy to model with-
in the framework of the virtual distortion method (VDM), which is
a fast, exact reanalysis method. By generating virtual distortions
(pseudo strains), the VDM is able to introduce large modifications
to the structure, which simulate vanishing of the shear forces and
appropriate contact conditions in delamination zones.

The problem of identification belongs to the field of SHM, which
has been developed intensively in the recent years. Many of the
SHM approaches use soft-computing methods, e.g. neural net-
works, genetic algorithms, pattern recognition, for the solution of
the problem of defect identification. In this paper, an analytical for-
mulation is proposed based on the VDM with an underlying model
updating procedure. Sensitivity information is effectively used in
an optimization algorithm solving the inverse problem of a poste-
riori identification. A concept of on-line identification, not related
to the VDM, is proposed, too.

2. Parameter modification by the virtual distortion method

2.1. General characteristic of VDM

The virtual distortion method (VDM) [12] belongs to fast
reanalysis methods in structural mechanics. This means that an
initial FEM response is necessary for introducing further modifica-
tions by determining proper fields of virtual distortions. A compar-
ative review of reanalysis methods can be found in [13], where
equivalence between the VDM and Sherman–Morrison–Woodbury
formulas is proved.

The VDM is conceptually similar to the initial strains approach.
Introduction of initial strains in structures was primarily proposed
to model plasticity. However, the local imposition of an initial
strain leads to violation of equilibrium conditions and the solution
proceeds in iterations. On the contrary, the VDM approach is able
to produce such solution in one step thanks to defining all local–
global interrelations in a structure in advance. The collection of
all the local–global responses, including information about struc-
tural topology, materials and boundary conditions, is called the
influence matrix within the framework of VDM. This matrix makes
an essential difference between the VDM and initial strains
approach.

The VDM has been used in various problems of structural de-
sign (e.g. prestress), optimization (e.g. topology remodelling) and
control (e.g. damping of vibrations) thus far. Some of its applica-
tions have been recently described in [14]. As presented in this pa-
per, it has also turned out to be a promising tool for identification
in SHM.

2.2. Influence matrix

In further description let us assume that the lowercase indices
refer to elements and the uppercase ones to nodes. Einstein’s sum-
mation convention is used. Underlined indices are exempt from
summation. Let us first demonstrate the concept of the influence
matrix for truss structures in static analysis.

Each component of the influence matrix Dij describes strains in
the truss member i caused by the unit virtual distortion e0

j ¼ 1 ap-
plied to the member j. For truss structures, the unit virtual distor-
tion is simply a unit axial tensile strain. The unit virtual distortion
is imposed in numerical calculations as a pair of self-equilibrated
compensative forces of reverse signs, equivalent to a unit strain, ap-
plied to the nodes of the strained element. The influence matrix Dij

collects n influence vectors, where n denotes the number of truss
elements. In order to build an influence vector, a solution of a stan-
dard linear elastic problem by the FEM has to be found:

KMNuN ¼ fM ð1Þ

with K being the stiffness matrix. Usually, the obtained global dis-
placements serve to calculate a corresponding response in local
strains:

ei ¼ GiNuN ð2Þ

with G being the geometric matrix, which transforms global degrees
of freedom to local strains. The response in strains is most often
considered for building an influence vector. However, storage of
any other required response, i.e., displacements, stresses or forces,
is also useful.

The external force vector f in (1) corresponds to two compensa-
tive axial forces applied to a structural member, equivalent with
application of a unit strain to the unconstrained member. The com-
pensative forces are applied to the diagonal element, taken out of
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the structure, shown in Fig. 1. The response of the structure to the
imposition of the unit virtual distortion e0

5 ¼ 1 is depicted by the
deformed configuration in Fig. 1. Thus to build the influence matrix
Dij, n solutions of a linear elastic problem have to be found. The set
(1) has to be solved with n different right-hand sides correspond-
ing to n pairs of compensative forces applied successively in each
structural member. This way, the influence matrix stores informa-
tion about the entire structure properties including topology,
material characteristics and boundary. Note that the static
influence matrix for statically determinate structures becomes
identity. This is due to the fact the such structures have no redun-
dancy, i.e. no internal constraints, so the application of an initial
strain to a member will not affect its neighbourhood. Thus in
statics, for structures of no redundancy, the VDM loses its major
numerical tool.

Analogously, the influence matrix can be built in dynamic anal-
ysis, where the response due to impact load in the first time step is
looked for. Integration of the equations of motion is performed by
the Newmark algorithm over some predefined period of time. In
order to build the influence matrix in dynamics, a pair of self-equil-
ibrated forces equivalent to unit strain is applied to a truss member
in the first time step only. Such a perturbation introduced to the
structure is called an impulse virtual distortion. In subsequent time
steps, the influence of the distortion on the structure is examined
over the discretized time period. Structural response in each time
step corresponds to an influence vector in statics, so the collection
of such responses from all time steps provides an influence ‘‘vec-
tor” in dynamics. This ‘‘vector” has an extra dimension, which is
time. An assembly of dynamic influence ‘‘vectors” constitutes the
dynamic influence ‘‘matrix”, which has two dimensions corre-
sponding to the number of structural members, like in statics,
and the third dimension – time. Generally, the dynamic influence
matrix is time dependent, however for harmonic excitation, it be-
comes quasi static (2D), because only amplitudes of responses are
stored.
1
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Fig. 1. Virtual distortion applied in a chosen element.
2.3. Stiffness modelling in truss elements

Let us confine our considerations to truss structures in the elas-
tic range and analyze introducing a field of initial strains e0, called
virtual distortions, into a truss structure. This action will induce
residual strains in the structure, expressed as follows (cf. [12]):

eR
i ¼ Dije

0
j : ð3Þ

Residual stresses are expressed by:

rR
i ¼ EiðDij � dijÞe0

j ; ð4Þ

where Ei denotes the Young’s modulus and dij – the Kronecker’s
delta.

Assume that application of external load to the structure pro-
vokes linear elastic response eL

i , rL
i , which will be superposed with

the residual response eR
i , rR

i . Thus in view of (3) and (4), we get:

ei ¼ eL
i þ eR

i ; ð5Þ
ri ¼ rL

i þ rR
i ¼ Eiðei � e0

i Þ: ð6Þ

Relation between element forces p and stresses r is known via the
cross-sectional areas A:

pi ¼ Airi: ð7Þ

Let us now take into account structural geometry modifications
exemplified by changes of cross-sectional area of a member. This
means considering of a modified value bA. In view of (6) and (7),
we can express element forces in the original structure with intro-
duced virtual distortion field, called the distorted structure, and in
the modified structure, as follows:

pi ¼EiAiðei � e0
i Þ; ð8Þ

p̂i ¼Ei
bAiêi: ð9Þ

The main postulate of the VDM in static remodelling requires that
local strains, including plastic ones, and forces in the distorted
and modified structure are equal:

ei ¼ êi; ð10Þ
pi ¼ p̂i: ð11Þ

This postulate leads to the following relation:

EiAiðei � e0
i Þ ¼ Ei

bAiei: ð12Þ

Eq. (12) provides the coefficient of the stiffness change l for each
truss element i as the ratio of the modified parameter bA to the initial
one A:

li ¼
bAi

Ai
¼

ei � e0
i

ei
: ð13Þ

Note that the coefficient li may be equivalently expressed as the ra-
tio of the initial to modified Young’s modulus of a truss element. If
li = 1 we deal with an intact structure. Variation of the coefficient in
the range 0 6 li 6 1 means degradation of stiffness and in the range
li P 1 increase of stiffness. Substituting (3) and (5) into (13) we get
a set of equations for e0

j , which must be solved for an arbitrary num-
ber of modified elements (usually small compared to all elements in
the structure), described by the coefficient li different than 1:

½dij � ð1� liÞDij�e0
j ¼ ð1� liÞeL

i : ð14Þ

In dynamics, a residual response is a discrete convolution of the
influence matrix and virtual distortions. The time-dependent resid-
ual displacement, strain and stress vectors can be expressed as fol-
lows (cf. (3) and (4)):
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eR
i ðtÞ ¼

Xt

s¼0

Dijðt � sÞe0
j ðsÞ; ð15Þ

rR
i ðtÞ ¼ Ei

Xt�1

s¼0

Dijðt � sÞ þ Dijð0Þ � dij

" #
e0

j ðsÞ: ð16Þ

Integration of equations of motion in time is handled by the New-
mark algorithm. The previously-given relations (5)–(13) are valid
for dynamics as well. While most quantities vary in time, the stiff-
ness change coefficient, defined analogously to (13), remains time
independent:

li ¼
bAi

Ai
¼

eiðtÞ � e0
i ðtÞ

eiðtÞ
: ð17Þ

The set of equations to be solved for distortions in dynamics looks
analogously to (14):

½dij � ð1� liÞDijð0Þ�e0
j ðtÞ ¼ ð1� liÞe–t

i ðtÞ: ð18Þ

where e–t
i ðtÞ denotes strains cumulated before the current step t:

e–t
i ðtÞ ¼ eL

i ðtÞ þ
Xt�1

s¼0

Dijðt � sÞe0
j ðsÞ: ð19Þ

Similarly to (14), the set (18) may be local if structural remodelling
is performed. In identification problems however, in which the loca-
tion of a damaged/degraded member is sought, the set (18) concerns
all elements potentially changed – usually the whole structure.

3. Modelling of delamination

3.1. Interconnection between laminates (contact layer)

Delamination of a double-layer beam is understood in the paper
as an existing defect of certain extension in the structure. The pro-
cess of crack growth, leading to the existence of the defect, is not
the subject of interest here. The authors have proposed the sim-
plest possible model of delamination, taking into account the con-
tact between the laminate layers.

This paper puts forward a proposition of introducing a special
interconnection between the layers of the laminate for modelling
delamination in two aspects. The principal one is that the shear
Fig. 2. (a) Double cantilever beam with the contact layer supposed t
forces in the interconnection, joining two laminate layers, should
vanish in delamination zones. The secondary aspect, rarely taken
into account in delamination modelling, is that proper contact be-
tween laminates should exist in delamination zones. This section
will be focused on explanation of how the interconnection be-
tween the laminate layers is constructed and how the VDM can
be used to model its behaviour.

When modelling delamination in multi-layer composites, Tim-
oshenko beam is appropriate to account for interactions of lami-
nates (cf. [15]). In this paper however, the Bernoulli beam is the
subject of consideration for two reasons – (i) 2D beams consisting
of only two layers are considered, (ii) simplified Bernoulli model
enables to perform identification of delamination by solving an in-
verse problem at an affordable numerical cost. In the FEM model,
standard 2-noded beam elements are used for the laminate layers.
The two-layer beam with the interconnection for modelling delam-
ination is shown in Fig. 2. Middle axes of the beams are depicted
with continuous horizontal white lines in Fig. 2a. In between, the
interconnection of the laminates, consisting of the diagonal and
vertical truss elements joining the middle axes of the beams, is
introduced. The role of the diagonal truss elements is to simulate
vanishing of shear forces in delamination zones. The role of the
vertical truss elements is to ensure proper contact conditions be-
tween the laminates. Stiffness characteristic of the vertical truss
elements, shown in Fig. 3, is assumed in an arbitrary way, enabling
some penetration of one laminate layer into another. In fact this is
not the case in reality, however this adjustment of stiffness of the
vertical elements turned out to be very important when matching
the numerical model to experiments. Friction is not taken into ac-
count in this paper, although there is no formal obstacle to include
it within the framework of VDM. The reason is again to minimize
numerical effort.

3.2. Modelling of delamination by VDM

The contact layer has a modular structure. Each section of the
layer consists of three elements – two diagonals denoted by A
and B and one vertical denoted by C in Fig. 4.

If delamination is to be modelled in selected sections of the con-
tact layer, then the following conditions in the diagonal elements
A, B have to be fulfilled:
o model delamination; (b) contact layer to be analysed by VDM.
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Fig. 3. Stress–strain relationship for the vertical elements of the contact layer.

Fig. 4. Zoomed section of the contact layer.
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lA
i ¼ 0) e0A

i ¼ eA
i ; ð20Þ

lB
i ¼ 0) e0B

i ¼ eB
i : ð21Þ

The superscripts A, B at a quantity refer to corresponding diagonal
elements. Depending upon the kind and direction of load applied
to the structure, the two laminates will either be in contact or
not. This is accounted for by examining the sign of strain in the ver-
tical element C. If tensile strain is encountered in the vertical ele-
ments, then appropriate distortions are generated, modelling no
contact between the laminate layers:

lC
i ¼ 0) e0C

i ¼ eC
i if eC

i > 0: ð22Þ

If compressive strain is encountered in the vertical elements,
then no distortions are generated and the layers stay in full contact
in spite of local delamination in between:

lC
i ¼ 1) e0C

i ¼ 0 if eC
i 6 0: ð23Þ

One should remember that the assumed characteristic (see Fig. 3)
allows for some penetration of one layer into another, which gives
the possibility of tuning the numerical model to experiment.

Implications of the conditions (20) and (21) say that distortions
are equal to total strains, however these relations cannot be di-
rectly used because total strains are a priori unknown. In order to
determine distortions one has to solve the general system of Eq.
(14), which allows for an arbitrary change of the coefficient l:

dij � ð1� lA
i ÞD

A
ij �ð1� lB

i ÞD
B
ij

�ð1� lA
i ÞD

A
ij dij � ð1� lB

i ÞD
B
ij

24 35 e0A
j

e0B
j

" #
¼
ð1� lA

i ÞeLA
i

ð1� lB
i ÞeLB

i

" #
:

ð24Þ

Simultaneously, the conditions l = 0 (cf. (20) and (21)) must be
substituted into the system to model delamination in the required
zone. The distortion vector and influence matrix have been divided
into parts corresponding to elements A and B, which facilitates the
organization of the algorithm and code. As soon as distortions in
diagonal elements are generated, it is necessary to check the sign
of strain in vertical elements, using a prediction, which is supposed
to reflect its sign (not the value) correctly (see section 3.3 for
comments):

eC
i ¼ eLC

i þ DA
ije

0A
j þ DB

ije
0B
j : ð25Þ

If it turns out that tensile stress is present, then the system of Eq.
(24) has to be extended, to include the calculation of distortion in
vertical elements, too:

dij � ð1� lA
i ÞD

A
ij �ð1� lB

i ÞD
B
ij �ð1� lC

i ÞD
C
ij

�ð1� lA
i ÞD

A
ij dij � ð1� lB

i ÞD
B
ij �ð1� lC

i ÞD
C
ij

�ð1� lA
i ÞD

A
ij �ð1� lB

i ÞD
B
ij dij � ð1� lC

i ÞD
C
ij

2664
3775 e0A

j

e0B
j

e0C
j

264
375

¼
ð1� lA

i ÞeLA
i

ð1� lB
i ÞeLB

i

ð1� lC
i ÞeLC

i

264
375 ð26Þ

Thus, the algorithm of delamination modelling consists of the fol-
lowing stages:

1. Initialize – influence matrix, linear response.
2. Solve the set (24) to determine distortions for vanishing of

shear forces in the contact layer.
3. Check the sign of strain in vertical elements of the contact layer

using (25).
4. If no contact between laminate layers appears, solve extended

set (26) to determine distortions.
5. Update strains in the whole structure.

In dynamics, the algorithm repeats the same stages in every
time step processed by the Newmark integration procedure. All
quantities, except for the modification coefficient l, are then time
dependent. Computations are costlier compared to statics, because
the amount of data is multiplied by the number of time steps.

3.3. Numerical example in statics

A double cantilever beam, shown in Fig. 5, of 1 m length and
0.02 m height, has been chosen to demonstrate the modelling of
delamination by VDM in statics. The contact layer is divided into
10 sections with three elements of type A, B, C in each one, result-
ing in 30 connecting elements altogether. The assumed geometri-
cal and material data are listed in Table 1.

Delamination zone extending through four sections 6–9 is ana-
lyzed (cf. Fig. 5). Two cases of static loading are considered. Calcu-
lations performed by the FEM package ANSYS serve as verification
of VDM results.

The first load case, shown in Fig. 5, is a single vertical force ap-
plied to the top beam at the cantilever’s free end. The intention is
to examine appropriateness of delamination modelling by VDM for
the case of closed crack. Fig. 6 depicts axial strains in diagonal ele-
ments A (numbered 1–10) and B (numbered 11–20) of the contact
layer for the structure with the assumed delamination. It is natural
that strains in the contact layer are larger in these elements A and
B, which are the closest to the delamination zone. Axial strains in
vertical elements C are calculated according to (25). For the consid-
ered loading, the first term in formula (25) is negligibly small and
the second and third terms cancel out due to almost identical value
and reverse signs of strains in elements A, B.

The second case of loading, corresponding to the structure with
open crack, is presented in Fig. 7. Axial strains in elements A and B,
shown in Fig. 8, appear only within the delamination zone and are
of the same sign and value. Contrary to the first loading case (cf.
Fig. 5), axial strains in contact elements C, depicted in Fig. 9, are
now two orders of magnitude larger than in diagonal elements A, B.



Fig. 5. Double cantilever beam subjected to 1st static loading.

Table 1
Data for the double-layer beam subjected to static test

Quantity Beam element Connecting truss element

Young’s modulus (GPa) 70 30
Cross-section area (m2) 5 � 10�5 5 � 10�5

Density (kg/m3) 3300 1
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Fig. 6. Axial strains in elements A, B of the contact layer for the 1st static loading.
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Fig. 8. Axial strains in elements A, B of the contact layer for the 2nd static loading.
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Fig. 9. Axial strains in elements C of the contact layer for the 2nd static loading.

Table 2
Data for the double-layer beam subjected to dynamic test

Quantity Beam element A, B element C element

Young’s modulus (GPa) 70 10 1
Cross-section area (m2) 5 � 10�5 5 � 10�5 5 � 10�5

Density (kg/m3) 3300 1 1
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For calculations with ANSYS, the contact elements CONTA171
and the associated TARGE169 were used. The coefficient of normal
contact stiffness factor was FKN = 0.1 and the coefficient of sliding
contact stiffness factor was FKT = 1.0. Agreement of VDM results
with ANSYS is very good.

3.4. Numerical example in dynamics

Another double cantilever beam of 1 m length and 0.02 m
height with slightly different material data, shown in Table 2 (cf.
Table 1 in section 3.3), is considered in dynamic test. Delamination
zone, presented in Fig. 10, extends now through three sections 5–7.
An impulse force of magnitude P and duration equal to one period
of sine was applied within the delamination zone.

Fig. 11 shows the time history of strain in the vertical element,
marked by a bold line in Fig. 10, under the applied force, for the in-
tact and delaminated structure. The VDM results, depicted in
Fig. 11, follow the ANSYS computations very closely, therefore
the latter ones were not shown for the clarity of presentation. It
is apparent that the strains grow considerably when the crack be-
Fig. 7. Double cantilever beam subjected to 2nd static loading.



Fig. 10. Double cantilever beam subjected to dynamic loading.
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Fig. 11. Axial strains in the element C, marked bold in Fig. 10, under the applied
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tween the upper and lower beam gets open. This can be clearly
seen for the time range between 0.002 s and 0.004 s. The effect is
also visualized in Fig. 12, presenting the shape of the deformed
structure, working in the open crack mode at the point of maxi-
mum strain.

3.5. Experimental validation in dynamics

An experimental validation of numerical model of delamination
was carried out. A double cantilever structure, schematically de-
picted in Fig. 13a, consisting of two aluminium beams – each one
of 0.8100 m length, 0.0250 m width and 0.0024 m height – was
Fig. 12. Structural deflection

actuator

actuator

Fig. 13. (a) Layout of a double-layer cantilever
investigated. The two beams were joined by 10 screws (see
Fig. 14a), placed in uniform distances over the length and marked
by vertical lines in Fig. 13a. This division was naturally adopted in
structuring the VDM-based contact layer (see Fig. 13b), whose ver-
tical elements are placed exactly at the location of screws, resulting
in 10 sections altogether. The height of the contact layer, joining
middle axes of the beams, is equal to the height of one beam i.e.
0.0024 m. The contact layer consists of 20 truss elements of type
A, B (diagonal) and 10 truss elements of type C (vertical). Each alu-
minium beam is divided into 80 finite beam elements, so there are
8 beam elements in each of the 10 sections of the contact layer.

The measuring system, presented in Fig. 15a, was used in exper-
iment. It consisted of:

1. an activation line, including signal generator, amplifier and pie-
zoelectric actuator (applying a bending moment to the beam),
shown in Fig. 14b.

2. a detection line, including a piezoelectric sensor, depicted in
Fig. 14c, conditioning amplifier and oscilloscope.

Both lines of the measuring system were coupled by a control-
ling computer.

A windowed sine signal, shown in Fig. 15b, was applied to the
structure by the actuator. The response in terms of voltage, propor-
tional to strains, was captured by the sensor for two cases. The first
one was the intact structure with no delamination. The second one
was the damaged structure with delamination extending through
three sections of the contact layer. The defect was modelled by
removing two screws, marked by dashed lines in Fig. 13a, from
the central part of the beam.

Numerical model of the structure was created and tuned to
experimental response using the intact structure configuration.
The tuned data read: Young’s modulus E = 41 GPa for the beam ele-
ments and stiffness EA = 925 � 103 Pa m2 for the truss elements in
the contact layer.
in the open crack mode.

sensor

sensor

beam; (b) the corresponding contact layer.



Fig. 14. (a) Screw connection; (b) actuator; (c) sensors.
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Arbitrary delamination was introduced to the structure in
experiment by removing two screws. The excitation frequency
was close to the 3rd eigenfrequency of the structure with delami-
nation. Responses of the damaged structure were collected and
compared with numerical analysis using the previously tuned
model. Comparison of the first eigenfrequencies between experi-
ment and numerical analysis is presented in Table 3. The highest
discrepancy can be observed for the 4th eigenfrequency. This mode
has two of its three nodal points, i.e. zero-displacement points,
coinciding with the start and end of the delamination zone. There-
fore the beams working in the 4th eigenmode should be influenced
by contact and friction within the delamination zone more signif-
icantly than in any other mode. This seems to be the reason of the
numerical–experimental discrepancy as friction has been disre-
garded in the numerical model.

Good agreement of results between the experiment and VDM
model is shown in Fig. 16, presenting time histories for the intact
and damaged structure.

4. Identification of delamination

4.1. Formulation of an off-line problem

Depending upon the application, the important problem of de-
fect identification can be handled in an off-line (post factum) or on-
Table 3
Conformity of the numerical model to experiment

Eigenfrequency Experimental Numerical

1 5.00 5.05
2 29.70 29.36
3 70.60 73.27
4 140.00 129.05
5 199.00 199.30
line (real-time) procedure. This section is devoted to the problem
of off-line identification of delamination by employing VDM-based
gradient optimization. Within the framework of VDM, an analytical
sensitivity analysis can be effectively performed. Therefore the in-
verse problem of identification can be solved using classical opti-
mization tools i.e. gradients of the objective function with
respect to a design variable.

Usually, frequencies and mode shapes obtained via modal anal-
ysis enter the objective function in the inverse problem of identifi-
cation. In this article strains have been chosen for the purpose. The
reason is that on the one hand strains can be easily modelled in
VDM (cf. (3) and (5)), on the other - they can be measured by pie-
zoelectric sensors. One more advantage is that the variation of
strains in dynamics is relatively smooth (compared to accelera-
-0.025

intact, experimental

intact, VDM

damaged, experimental

damaged, VDM
time [s]

Fig. 16. Numerical vs. experimental results for the cantilever beam.
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tions for instance), which is convenient from the signal processing
point of view. Thus, we pose the identification task as a standard
non-linear least squares minimization problem with the objective
function expressed as follows:

FðlÞ ¼ ebeam
k � ebeamM

k

ebeamM
k

 !2

: ð27Þ

The function (27) collects responses from selected k sensors placed
in beam elements, where flexural strains are measured. Note that
the measured strains, denoted by the superscript M, refer to hori-
zontal beam elements (see Figs. 2 and 4), whereas modifications
to the structure are introduced only in truss elements A, B, C of
the contact layer. This is an important distinction, which implies
building an extended influence matrix, Dext

kj collecting not just the
interrelations within the contact layer, but also the influence of
the truss members on the connected beam members.

The axial strain in truss elements e (of type A, B or C) depends
non-linearly upon the modification coefficient l (cf. (13)), which
is further used as a variable in optimization. Natural constraints
are imposed on the modification coefficient l, which is non-nega-
tive by definition:

li P 0: ð28Þ

If delamination has been identified, the constraints (28) are active.
Another formal constraint has to be imposed on l, related to struc-
tural degradation:

li 6 1: ð29Þ

Using (3) and (5) and building the extended influence matrix, the
gradient of the objective function (27) with respect to the optimiza-
tion variable l is expressed as
Fig. 17. Double-layer beam analyzed t
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oe0
j

oli
: ð30Þ

The partial derivative
oe0

j

oli
can be easily calculated by differentiating

relation (24) or (26) with respect to l:

dij � ð1� lA
i ÞD

A
ij �ð1� lB

i ÞD
B
ij �ð1� lC

i ÞD
C
ij

�ð1� lA
i ÞD

A
ij dij � ð1� lB

i ÞD
B
ij �ð1� lC

i ÞD
C
ij

�ð1� lA
i ÞD

A
ij �ð1� lB

i ÞD
B
ij dij � ð1� lC

i ÞD
C
ij

26664
37775

oe0A
j

oli

oe0B
j

oli

oe0C
j

oli

2666664

3777775 ¼
�eA

i

�eB
i

�eC
i

264
375
ð31Þ

Note that the left-hand side matrices in (26) and (31) are alike,
which simplifies computations. Only the right-hand sides are
different.

The optimization variable l is updated according to the steepest
descent method:

lðnþ1Þ
i ¼ lðnÞi � aFðnÞ

rFðnÞi

½rFðnÞi �
TrFðnÞi

: ð32Þ

Superscript (n) denotes values in current iteration and (n + 1) in
subsequent iteration. The constant a varies in the range 0.1–0.3.

The algorithm solving the problem of identification of delami-
nation processes the following stages:

A. Initial calculations

1. calculate response eL
i (contact layer, truss elements) and ebeamL

k

(sensors, beam elements) of the intact structure subjected to
external load, using a numerical model;

2. determine measured response ebeamM
k of the structure with

introduced modifications using k sensors in experiment (alter-
natively, simulate the measured response numerically);
o identify delamination in statics.

6 7 8 9 10
 number

r delamination – static load.

ntify inner delamination in dynamics.
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3. compute the influence matrix Dij for the contact layer and the
extended influence matrix Dext

kj including the truss-beam
interactions;

4. set the initial value of optimization variable to unity li = 1,
which implies e0

i ¼ 0, ek ¼ ebeam L
k .

B. Iterative calculations

1. store the current value Fcur of the objective function (27) as the
former value Ffor;

2. solve the set (31) for partial derivatives
oe0

j

oli
;

3. calculate the gradient rFi using (30);
4. determine next value of the variable lðnþ1Þ

i using (32);
5. solve for distortions e0

i , using (26);
6. update ebeam L

k , using (5);
7. calculate the current value of the objective function Fcur;
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Fig. 22. (a) Results of search for inner and edge delaminatio
8. check the termination criterion – if Fcur/Ffor 6 10�3 then STOP
else go to B.1.

In dynamics, the stages are handled in each time step by the
Newmark integration procedure.

4.2. Numerical off-line identification in statics and dynamics

For checking the effectiveness of the VDM-based identification
algorithm, examples of double cantilever beams, presented in Sec-
tions 3.3 and 3.4, are used.

In statics, a cantilever beam, shown in Fig. 17, with the contact
layer devided into 10 sections is analyzed (data as in section 3.3).
The structure is subjected to a static force applied at the free
end. The delamination zone extends over three sections 5–7. The
beam is equipped with 20 sensors, located in each horizontal
element of both the lower and upper beam. The results of
11 12 13 14 15 16 17 18 19 20
n number

delamination – dynamic load.

inner and edge delamination in dynamics.

200             250

11 12 13 14 15 16 17 18 19 20

 number

150
ion number

n – dynamic load; (b) variations of l in 250 iterations.
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identification, obtained after 200 optimization iterations, are
shown in. Fig. 18. The assumed zone of delamination has been de-
tected correctly.

In dynamics, the contact layer, shown in Fig. 19, is divided into
20 sections (data as in section 3.4). An impulse sine load (cf.
Fig. 15b) with a duration equal to the time period of the 4th eigen-
frequency of the beam is applied as excitation at the free end. The
delamination zone extends over four sections 11–14. Contrary to
the static case, only four sensors mounted on the upper beam,
marked by bold lines in Fig. 19, are considered in the identification
process. The results reached after 300 iterations are presented in
Fig. 20. The obtained accuracy is very good.

Another example in dynamics focuses on identification of two
zones of delamination, depicted in Fig. 21, including the inner part
and the edge of the cantilever beam. The damaged zone extends
over sections 15–16 and 19–20 of the contact layer. This scenario
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Fig. 23. (a) Numerical vs. experimental identification of delamination for the
double-layer beam; (b) variations of l in 150 iterations.

97531 97531

Fig. 24. The net of paired sensors abl
of delamination is harder to detect as can be seen in Fig. 22, how-
ever both zones of damage have been correctly located. The result
can be improved with more sophisticated optimization.

4.3. Experimental verification of off-line identification in dynamics

Analogously to the experimental verification carried out for
delamination modelling, described in section 3.5, similar measure-
ments were collected to check the correctness of delamination
identification. The same experimental stand was used. Delamina-
tion was applied by removing two screws tightening the two
beams in the middle part of the structure, as shown in Fig. 14a.
Thus the delamination extends over three sections of the contact
layer modelled by VDM. The first stage was to tune numerical
model to experimental response. It was achieved with the material
data given in section 3.5. With the well-tuned model, identification
algorithm was run and the results of delamination identification
are shown in Fig. 23.

The agreement between the experiment and the simple numer-
ical model with coarse discretization is very good. Due to the fact
that the double beam was connected with screws, there is always
some contact between layers in the vicinity of the screws. That is
why the identified stiffness in the assumed delaminated sections
close to the tightened screws does not drop to zero but just half
the initial stiffness. In the middle section of assumed delamination,
where both neighbouring screws are removed, the ideal zero value
was detected.

4.4. Numerical on-line identification in dynamics

On-line identification of delamination is extremely important in
some kinds of applications requiring ‘‘allow” or ‘‘not allow” deci-
sions e.g. assessing structural health of a helicopter rotor in mo-
tion. Intuitively, it is likely that the problem will require more
sensors, able to detect a defect quickly in real time.

The concept of on-line identification of delamination assumes a
uniformly distributed net of sensors, acting in pairs, attached to the
upper and lower surface of the double-layer beam structure, as
shown in Fig. 24. Piezoelectric sensors measure voltage on upper
and lower surface, which is proportional to flexural strain of the
beam. Local delamination manifests itself in an apparent difference
observed in responses of co-located (paired) sensors.

Numerical simulation was run to validate the idea. Fig. 25a de-
picts time signals captured by the sensors with delamination
occurring in the midpoint of the analyzed period. The correspond-
ing difference in response for the pairs of sensors is presented in
Fig. 25b. The numerically assumed delamination extends over sec-
tions 13–15 and the difference in voltage clearly identifies this
zone.

Experimental verification of this promising result will be pur-
sued in the future.
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Fig. 25. (a) Time histories and (b) signal amplitudes for on-line identification of delamination.
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5. Conclusions

The paper presents an idea of modelling and identification of
delamination in a two-layer beam using the virtual distortion
method. A novel concept of the contact layer, consisting of simple
truss elements, connecting the two beam layers, has been pro-
posed. The Bernoulli beam model and no friction between layers
were the assumptions aiming at the reduction of numerical costs.
However, the adopted model has turned out to follow the experi-
ment faithfully for the problem of delamination modelling (see
Fig. 16).

An approach for performing off-line identification by solving an
analytically posed inverse problem has been proposed. With the
adopted simplified model of the contact layer in between two
beams, the identification has proceeded to expected solutions in
reasonable computational time. The major difference between
the static and dynamic approach is that we need many sensors
in statics and only a few in dynamics. The reason is that the num-
ber of available data in statics is very limited while time histories
of the monitored quantities in dynamics compensate the fact of
mounting just a few sensors. However, the price to pay for the priv-
ilege of having lots of data in dynamics is a much more time-con-
suming numerical analysis. Good qualitative identification of two
delamination zones, including the edge, has been achieved (see
Fig. 22). Experimental verification of delamination identification
in dynamics has also been successful, as evidenced in Fig. 23.

A proposition for on-line identification has been put forward.
The problem has just been recognized at the numerical level. An
experimental verification will be the subject of future research.
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